Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen in mice (Pamptigen). A single immunization of PapMV without added adjuvant efficiently induced both cellular and specific long-lasting antibody responses. PapMV also efficiently activated innate immune responses, as shown by the induction of lipid raft aggregation, secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules on dendritic cells and macrophages, and long-lasting adjuvant effects upon the specific antibody responses to model antigens. PapMV mixed with Salmonella enterica serovar Typhi (S. typhi) outer membrane protein C increased its protective capacity against challenge with S. typhi, revealing the intrinsic adjuvant properties of PapMV in the induction of immunity. Antigen-presenting cells loaded with PapMV efficiently induced antibody responses in vivo, which may link the innate and adaptive responses observed. PapMV recognition as a Pamptigen might be translated into long-lasting antibody responses and protection observed. These properties could be used in the development of new vaccine platforms.