Transforming growth factor-beta (TGF-beta) and glial-cell-line-derived neurotrophic factor (GDNF) have been shown to synergize in several paradigms of neuronal survival. We have previously shown that cerebellar granule neurons (CGN) degenerate in low potassium via ERK1/2 (extra-cellular-regulated kinase)-dependent plasma membrane (PM) damage and caspase-3-dependent DNA fragmentation. Here, we have investigated the putative synergistic function of GDNF and TGF-beta in CGN degeneration. GDNF alone prevents low-potassium-induced caspase-3 activation and DNA fragmentation but does not affect either low-potassium-induced ERK activation or PM damage. TGF-beta alone does not affect low-potassium-induced DNA fragmentation but potentiates low-potassium-induced PM damage. This effect of TGF-beta is independent of ERK1/2 activation but dependent on p38-MAPK (mitogen-activated protein kinase) activation. When co-applied with TGF-beta, GDNF paradoxically antagonizes TGF-beta-induced potentiation of PM damage by inhibiting TGF-beta-induced p38-MAPK activation. In addition, PI3K (phosphatidylinositol 3-kinase) inhibitors abolish the GDNF effect. This study thus demonstrates a differential mechanism of action of GDNF and TGF-beta on CGN degeneration. GDNF inhibits caspase-3-dependent DNA fragmentation but does not affect ERK-dependent PM damage. However, GDNF can attenuate TGF-beta-induced p38-MAPK-dependent PM damage via the PI3K pathway.