Synthesis, characterization, and study of octanuclear iron-oxo clusters containing a redox-active Fe4O4-cubane core

Inorg Chem. 2008 Jan 21;47(2):645-55. doi: 10.1021/ic7020337. Epub 2007 Dec 14.

Abstract

A one-pot synthetic procedure yields the octanuclear Fe(III) complexes Fe(8)(micro(4-)O)(4)(micro-pz(*))(12)X(40, where X = Cl and pz(*) = pyrazolate anion (pz = C(3)H(3)N(2)-) (1), 4-Cl-pz (2), and 4-Me-pz (3) or X = Br and pz(*) = pz (4). The crystal structures of complexes 1-4, determined by X-ray diffraction, show an Fe(4)O(4)-cubane core encapsulated in a shell composed of four interwoven Fe(micro-pz(*))(3)X units. Complexes 1-4 have been characterized by 1H NMR, infrared, and Raman spectroscopies. Mössbauer spectroscopic analysis distinguishes the cubane and outer Fe(III) centers by their different isomer shift and quadrupole splitting values. Electrochemical analyses by cyclic voltammetry show four consecutive, closely spaced, reversible reduction processes for each of the four complexes. Magnetic susceptibility studies, corroborated by density functional theory calculations, reveal weak antiferromagnetic coupling among the four cubane Fe centers and strong antiferromagnetic coupling between cubane and outer Fe atoms of 1. The structural similarity between the antiferromagnetic Fe(8)(micro(4-)O)(4) core of 1-4 and the antiferromagnetic units contained in the minerals ferrihydrite and maghemite is demonstrated by X-ray and Mössbauer data.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray
  • Ferric Compounds / chemical synthesis
  • Ferric Compounds / chemistry*
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Oxidation-Reduction
  • Spectrophotometry, Infrared
  • Spectroscopy, Mossbauer

Substances

  • Ferric Compounds
  • ferric oxide