Leptin deficiency per se dictates body composition and insulin action in ob/ob mice

J Neuroendocrinol. 2008 Jan;20(1):120-7. doi: 10.1111/j.1365-2826.2007.01626.x.

Abstract

Obese humans are often insulin- and leptin resistant. Since leptin can affect glucose metabolism, it is conceivable that a lack of leptin signal transduction contributes to insulin resistance. It remains unclear whether leptin affects glucose metabolism via peripheral and/or central mechanistic routes. In the present study, we aimed: (i) to determine the relative contributions of lack of leptin signal transduction and adiposity to insulin resistance and (ii) to establish the impact of central leptin action on glucose metabolism. To address the first point, ob/ob mice were subjected to severe calorie restriction, so that their body weight became similar to that of wild-type mice. Insulin sensitivity was measured in obese ob/ob, lean (food restricted) ob/ob and lean, weight-matched wild-type mice. To address the second point, leptin (or vehicle) was i.c.v. infused to the lateral cerebral ventricle of ob/ob mice and insulin sensitivity was determined. Hyperinsulinaemic euglyceamic clamps were used to quantify insulin sensitivity. Food restriction barely affected body composition, although it profoundly curtailed body weight. Insulin suppressed hepatic glucose production (HGP) to a greater extent in lean ob/ob than in obese ob/ob mice, but its impact remained considerably less than in wild-type mice (% suppression: 11.8 +/- 8.9 versus 1.3 +/- 1.1 versus 56.6 +/- 13.0%/nmol, for lean, obese ob/ob and wild-type mice, respectively; P < 0.05). The insulin-mediated glucose disposal (GD) of lean ob/ob mice was also in between that of obese ob/ob and wild-type mice (37.5 +/- 21.4 versus 25.1 +/- 14.6 versus 59.6 +/- 17.3 mumol/min/kg/nmol of insulin, respectively; P < 0.05 wild-type versus obese ob/ob mice). Leptin infusion acutely enhanced both hepatic insulin sensitivity (insulin-induced inhibition of HGP) and insulin-mediated GD (9.1 +/- 2.4 versus 5.0 +/- 2.7%/nmol of insulin, and 25.6 +/- 5.6 versus 13.6 +/- 4.8 mumol/min/kg/nmol of insulin, respectively; P < 0.05 for both comparisons) in ob/ob mice. Both a lack of leptin signals and adiposity may contribute to insulin resistance in obese individuals. Diminution of central leptin signalling can critically affect glucose metabolism in these individuals.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / analysis
  • Blood Glucose / metabolism
  • Body Composition / genetics*
  • Body Weight / genetics
  • Body Weight / physiology
  • Fatty Acids, Nonesterified / blood
  • Female
  • Food Deprivation / physiology
  • Glucose / metabolism
  • Glucose Clamp Technique
  • Growth and Development / physiology
  • Insulin / blood
  • Insulin / metabolism
  • Insulin / physiology*
  • Leptin / genetics*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Mice, Transgenic
  • Obesity / blood
  • Obesity / genetics
  • Obesity / physiopathology

Substances

  • Blood Glucose
  • Fatty Acids, Nonesterified
  • Insulin
  • Leptin
  • Glucose