The effects of alpha-tocopherol (C16) and its homologues with different chain length (6-hydroxychromanes-C1, C6, C11) on lipid peroxidation induced luminol-dependent chemiluminescence in rat liver microsomal suspensions were studied. It was shown that C1, C6 and C11 inhibited the (Fe(2+) + ascorbate)-and (Fe(2+) + NADP.H)-induced chemiluminescence. The inhibitory effect was decreased in the order: C1 C6 C11, C16 was not influenced chemiluminescence. The possible reason underlying these differences was discussed: different efficiency of interaction of C16 and its homologues with hydroxyl and superoxide radicals, which initiate the luminol-dependent chemiluminescence. It was concluded that C16 (in concentration below 0.5 mM) was not interacted with hydroxyl and superoxide free radicals, generated in microsomal suspensions under (Fe(2+) + ascorbate)- and (Fe(2+) + NADP.H)-dependent lipid peroxidation.