LuxG is a functioning flavin reductase for bacterial luminescence

J Bacteriol. 2008 Mar;190(5):1531-8. doi: 10.1128/JB.01660-07. Epub 2007 Dec 21.

Abstract

The luxG gene is part of the lux operon of marine luminous bacteria. luxG has been proposed to be a flavin reductase that supplies reduced flavin mononucleotide (FMN) for bacterial luminescence. However, this role has never been established because the gene product has not been successfully expressed and characterized. In this study, luxG from Photobacterium leiognathi TH1 was cloned and expressed in Escherichia coli in both native and C-terminal His6-tagged forms. Sequence analysis indicates that the protein consists of 237 amino acids, corresponding to a subunit molecular mass of 26.3 kDa. Both expressed forms of LuxG were purified to homogeneity, and their biochemical properties were characterized. Purified LuxG is homodimeric and has no bound prosthetic group. The enzyme can catalyze oxidation of NADH in the presence of free flavin, indicating that it can function as a flavin reductase in luminous bacteria. NADPH can also be used as a reducing substrate for the LuxG reaction, but with much less efficiency than NADH. With NADH and FMN as substrates, a Lineweaver-Burk plot revealed a series of convergent lines characteristic of a ternary-complex kinetic model. From steady-state kinetics data at 4 degrees C pH 8.0, Km for NADH, Km for FMN, and kcat were calculated to be 15.1 microM, 2.7 microM, and 1.7 s(-1), respectively. Coupled assays between LuxG and luciferases from P. leiognathi TH1 and Vibrio campbellii also showed that LuxG could supply FMNH- for light emission in vitro. A luxG gene knockout mutant of P. leiognathi TH1 exhibited a much dimmer luminescent phenotype compared to the native P. leiognathi TH1, implying that LuxG is the most significant source of FMNH- for the luminescence reaction in vivo.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • FMN Reductase / chemistry
  • FMN Reductase / genetics*
  • FMN Reductase / metabolism
  • Flavins / metabolism*
  • Gene Deletion
  • Hydrogen-Ion Concentration
  • Luminescence*
  • Molecular Sequence Data
  • NAD / metabolism
  • NADP / metabolism
  • Oxidation-Reduction
  • Oxidoreductases / chemistry
  • Oxidoreductases / genetics*
  • Oxidoreductases / metabolism
  • Photobacterium / genetics
  • Photobacterium / metabolism
  • Plasmids / genetics
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid
  • Temperature

Substances

  • Bacterial Proteins
  • Flavins
  • Recombinant Proteins
  • NAD
  • NADP
  • Oxidoreductases
  • luxG protein, Bacteria
  • FMN Reductase