Vascular endothelial cell (VEC) dysfunction in diabetes has been associated with hyperglycaemia-induced intra- and extracellular glycation of proteins and to overproduction of glucose-derived free radicals. VEC protect their intracellular environment against an increased influx of glucose in face of hyperglycaemia by reducing the expression and plasma membrane abundance of their glucose transporter-1 (GLUT-1). We investigated the hypothesis that glucose-derived free radicals induce this down-regulatory mechanism in VEC, but proved the contrary. In fact, pro-oxidants significantly increased the expression and plasma membrane abundance of GLUT-1 and the rate of glucose transport in VEC while abolishing high-glucose-induced down-regulation of the hexose transport system. The resulting uncontrolled influx of glucose followed by overproduction of glucose-derived ROS further up-regulates the rate of glucose transport, and vice versa. This perpetuating glycoxidative stress finally leads to the collapse of the auto-regulatory protective mechanism and accelerates the development of dysfunctional endothelium in blood vessels.