Background: Efficient islet isolation represents a necessary requirement for successful islet transplantation as a treatment for type 1 diabetes. The choice of collagenase for pancreas digestion is critical for the isolation outcome, and Liberase is the most widely used enzyme, although large intra-batched variability in activity and efficiency has been observed.
Methods: The aim of this study was to characterize Liberase components and their relative role in pancreas digestion. Liberase batches were characterized by microelectrophoresis.
Results: By means of microelectrophoresis, we identified three main proteins each with different prevalences between batches. Two proteins were found to correspond to class I (CI) and one to class II (CII) collagenase. In a series of 163 islet isolations, we observed that the CII correlated with islet yield (P<0.001) and digestion time (P<0.001); additionally, CI directly correlated with purity (P=0.028). Finally, when CII and one of the CI isoforms were >50 percentile, 15 of 36 preparations were transplanted, with 27 of 127 transplanted in the other cases (P=0.013).
Conclusion: These results represent an important step toward the characterization of enzymes, with the final aim of identifying key components for a standardized product.