Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer

Rapid Commun Mass Spectrom. 2008;22(3):271-8. doi: 10.1002/rcm.3356.

Abstract

Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

Publication types

  • Evaluation Study

MeSH terms

  • Amino Acid Sequence
  • Cyclotrons / instrumentation*
  • Electron Transport
  • Equipment Design
  • Equipment Failure Analysis
  • Microchemistry / instrumentation
  • Microchemistry / methods
  • Molecular Sequence Data
  • Peptide Mapping / methods*
  • Proteins / analysis
  • Proteins / chemistry*
  • Specimen Handling / instrumentation*
  • Spectrometry, Mass, Electrospray Ionization / instrumentation*
  • Spectrometry, Mass, Electrospray Ionization / methods
  • Spectroscopy, Fourier Transform Infrared / instrumentation*
  • Spectroscopy, Fourier Transform Infrared / methods

Substances

  • Proteins