Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. The purpose of this study was to prospectively evaluate sensitivity and specificity of various estimated perfusion parameters at three-dimensional (3D) perfusion magnetic resonance (MR) imaging of the liver in the diagnosis of advanced liver fibrosis (stage >or= 3), with histologic analysis, liver function tests, or MR imaging as the reference standard. Whole-liver 3D perfusion MR imaging was performed in 27 patients (17 men, 10 women; mean age, 55 years) after dynamic injection of 8-10 mL of gadopentetate dimeglumine. The following estimated perfusion parameters were measured with a dual-input single-compartment model: absolute arterial blood flow (F(a)), absolute portal venous blood flow (F(p)), absolute total liver blood flow (F(t)) (F(t) = F(a) + F(p)), arterial fraction (ART), portal venous fraction (PV), distribution volume (DV), and mean transit time (MTT) of gadopentetate dimeglumine. Patients were assigned to two groups (those with fibrosis stage <or= 2 and those with fibrosis stage >or= 3), and the nonparametric Mann-Whitney test was used to compare F(a), F(p), F(t), ART, PV, DV, and MTT between groups. Receiver operating characteristic curve analysis was used to assess the utility of perfusion estimates as predictors of advanced liver fibrosis. There were significant differences for all perfusion MR imaging-estimated parameters except F(p) and F(t). There was an increase in F(a), ART, DV, and MTT and a decrease in PV in patients with advanced fibrosis compared with those without advanced fibrosis. DV had the best performance, with an area under the receiver operating characteristic curve of 0.824, a sensitivity of 76.9% (95% confidence interval: 46.2%, 94.7%), and a specificity of 78.5% (95% confidence interval: 49.2%, 95.1%) in the prediction of advanced fibrosis.
(c) RSNA, 2008.