Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing

J Proteome Res. 2008 Mar;7(3):1036-45. doi: 10.1021/pr700611w. Epub 2008 Jan 23.

Abstract

Membrane proteins are of particular interest in proteomics because of their potential therapeutic utility. Past proteomic approaches used to investigate membrane proteins have only been partially successful at providing a comprehensive analysis due to the inherently hydrophobic nature and low abundance for some of these proteins. Recently, these difficulties have been improved by analyzing membrane protein enriched samples using shotgun proteomics. In addition, the recent application of methanol-assisted trypsin digestion of membrane proteins has been shown to be a method to improve membrane protein identifications. In this study, a comparison of different concentrations of methanol was assessed for assisting membrane protein digestion with trypsin prior to analysis using a gel-based shotgun proteomics approach called peptide immobilized pH gradient isoelectric focusing (IPG-IEF). We demonstrate the use of peptide IEF on pH 3-10 IPG strips as the first dimension of two-dimensional shotgun proteomics for protein identifications from the membrane fraction of rat liver. Tryptic digestion of proteins was carried out in varying concentrations of methanol in 10 mM ammonium bicarbonate: 0% (v/v), 40% (v/v), and 60% (v/v). A total of 800 proteins were identified from 60% (v/v) methanol, which increased the protein identifications by 17% and 14% compared to 0% (v/v) methanol and 40% (v/v) methanol assisted digestion, respectively. In total, 1549 nonredundant proteins were identified from all three concentrations of methanol including 690 (42%) integral membrane proteins of which 626 of these proteins contained at least one transmembrane domain. Peptide IPG-IEF separation of peptides was successful as the peptides were separated into discrete pI regions with high resolution. The results from this study prove utility of 60% (v/v) methanol assisted digestion in conjunction with peptide IPG-IEF as an optimal shotgun proteomics technique for the separation and identification of previously unreported membrane proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hydrogen-Ion Concentration
  • Isoelectric Focusing / methods*
  • Liver / chemistry*
  • Membrane Proteins / chemistry*
  • Peptides / chemistry*
  • Proteome*
  • Rats

Substances

  • Membrane Proteins
  • Peptides
  • Proteome