Hierarchical regulation of nitrogen export from urban catchments: interactions of storms and landscapes

Ecol Appl. 2007 Dec;17(8):2347-64. doi: 10.1890/06-0031.1.

Abstract

In urban catchments of arid central Arizona, we investigate how the export of mineral and organic nitrogen (N) in storm runoff is regulated by interactions between local landscape characteristics and broader scale storm features. First, we test whether N export is more a function of (1) processes that affect N concentration in runoff or (2) the propensity of the catchment to convey rainfall as runoff. With data pooled across catchments, the mass of N in export (load) is determined by processes regulating runoff N concentration. There are exceptions when catchments are examined individually, where N load from some catchments is determined by the hydrologic responsiveness of the catchment. Second, we investigate the relationship between N export and catchment features. Loads per catchment area were greater from more impervious catchments, probably because impervious catchments held more N in a mobilizable phase and conveyed more rainfall as overland flow. Loads per area were lower from larger catchments, possibly owing to more N-retention hot spots in larger catchments. Catchments with the greatest N exports were those with commercial land use, and loads decreased as development became less prevalent or as residential replaced industrial land use. Third, we investigated how catchment features moderated direct responses of N export to storms. Export was less correlated with storm features in catchments that were larger, more pervious, and less industrial. Results support an "N build and flush" hypothesis, which purports that there is little biotic processing of N deposited to arid, urban surfaces with little organic matter. The rate and duration of deposition determine the size of the mobile N pool. Any amount of rainfall capable of generating overland flow would entrain nearly all mobilizable N and export it from the catchment. Nonetheless, these results suggest that, even with daunting seasonal and interannual variability in storm conditions, material export can be reduced by managing intrinsic catchment features.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arizona
  • Cities
  • Conservation of Natural Resources
  • Ecosystem*
  • Nitrates
  • Nitrogen / chemistry*
  • Quaternary Ammonium Compounds
  • Urban Population
  • Water Pollutants, Chemical / chemistry
  • Water Pollution, Chemical / prevention & control
  • Weather*

Substances

  • Nitrates
  • Quaternary Ammonium Compounds
  • Water Pollutants, Chemical
  • Nitrogen