Comprehensive analysis of the helix-X-helix motif in soluble proteins

Proteins. 2008 Jul;72(1):115-35. doi: 10.1002/prot.21879.

Abstract

Alpha-helices are the most common secondary structures found in globular proteins. In this report, we analyze the stereochemical and sequence properties of helix-X-helix (HXH) motifs in which two alpha-helices are linked by a single residue, in search of characteristic structures and sequence signals. The analysis is carried out on a database of 837 nonredundant HXH motifs. The kinks are characterized by the bend angle between the axes of the N-terminal and C-terminal helices and the wobble angle corresponding to the rotation of C-terminal helix axis on the plane perpendicular to the N-terminal one. The phi-psi dihedral angles of the linker residue are clustered in six distinct areas of the Ramachandran plot: two areas are located in the additional allowed alpha region (alpha(1) and alpha(2)), two areas are in the additional allowed beta region (beta(1) and beta(2)) and two areas have positive phi values (alpha(L) and beta(M)). Each phi/psi region corresponds to characteristic bend and wobble angles and amino acid distributions. Bend angles can vary from 0 degrees to 160 degrees. Most wobble angles correspond to a counter-clockwise rotation of the C-terminal helix. Proline residues are rigorously excluded from the linker position X but have a high propensity at position X+1 of the beta(1) and beta(2) motifs (12 and 7, respectively) and at position X+3 of the alpha(1) motifs (9). Glycine linkers are located either in the alpha(L) region (20%) or in the beta(M) region (80%). This latter conformation is characterized by a marked bend angle (124 degrees +/- 18 degrees) and a clockwise wobble. Among other amino acids, Asn is remarkable for its high propensity (>3) at the linker position of the alpha(2), beta(1), and beta(2) motifs. Stabilization of HXH motifs by H-bonds between polar side chains of the linker and polar groups of the backbone is determined. A method based on position-specific scoring matrices is developed for conformational prediction. The accuracy of the predictions reaches 80% when the method is applied to proline-induced kinks or to kinks with bend angles in the 50 degrees-100 degrees range.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs*
  • Amino Acid Sequence
  • Databases, Protein
  • Hydrogen Bonding
  • Hydrophobic and Hydrophilic Interactions
  • Molecular Sequence Data
  • Protein Structure, Secondary
  • Proteins / chemistry*
  • Solubility
  • Solvents

Substances

  • Proteins
  • Solvents