The separation of antagonist from agonist effects of trisubstituted purines on CaV2.2 (N-type) channels

J Neurochem. 2008 May;105(4):1450-61. doi: 10.1111/j.1471-4159.2008.05248.x. Epub 2008 Jan 23.

Abstract

Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure-function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Calcium Channel Blockers / chemistry*
  • Calcium Channel Blockers / metabolism
  • Calcium Channel Blockers / pharmacology*
  • Calcium Channels, N-Type / metabolism
  • Purines / chemistry*
  • Purines / metabolism
  • Purines / pharmacology*
  • Rana catesbeiana
  • Roscovitine
  • Structure-Activity Relationship
  • Xenopus Proteins / agonists*
  • Xenopus Proteins / antagonists & inhibitors*
  • Xenopus Proteins / metabolism

Substances

  • CACNA1B protein, Xenopus
  • Calcium Channel Blockers
  • Calcium Channels, N-Type
  • Purines
  • Xenopus Proteins
  • Roscovitine