Characteristics, including fluorescence intensity and specific UV absorbance (SUVA), of 16 organic matter (OM) fractions isolated from four OM samples plus a standard were analyzed and correlated with their specific disinfection by-product (DBP) and total organic halogen (TOX) formation after chloramination. These isolates were obtained from various water sources by using XAD-8/4 resins. Chloramination was achieved by adding 20mg/L monochloramine to a solution containing one OM isolate at 5mg/L DOC and buffered at pH 7.5 for 7 days. The fluorescence regional integration (FRI) method was used to analyze the fluorescence intensity data obtained from excitation-emission matrix (EEM) fluorescence spectroscopy, in which the EEM figure was divided into five regions and a normalized fluorescence volume was calculated. The cumulative normalized EEM volumes at regions II and IV (Phi(II+IV,)(n)) showed linear relationships with the yields of dichloroacetic acid (DCAA) (R(2)=0.60), chloroform (R(2)=0.42), dichloroacetonitrile (DCAN) (R(2)=0.53), and TOX (R(2)=0.63). The SUVA values were found to have linear relationships with the yields of DCAA (R(2)=0.82), chloroform (R(2)=0.73), DCAN (R(2)=0.88) and TOX (R(2)=0.80), but not with the yields of cyanogen chloride (CNCl) and chloropicrin (CP). A modified model is proposed to simplify the reactions involving chloramination of OM fractions. FTIR spectra of OM before and after chloramination partially confirmed that ketone groups were reactive with monochloramine.