Tardive dystonia (TD) is a disabling disorder induced by neuroleptics. Internal globus pallidus (GPi) stimulation can dramatically improve TD. The present positron emission tomography and H(2)(15)O study aimed to characterize the abnormalities of brain activation of TD and the impact of GPi stimulation on these abnormalities in five TD patients treated with GPi stimulation and eight controls. Changes of regional cerebral blood flow (rCBF) were determined: (i) at rest; (ii) when moving a joystick with the right hand in three freely chosen directions in on and off bilateral GPi stimulation. A significant increase of rCBF was found in TD patients in off-stimulation condition compared to controls: (1) during motor execution in the prefrontal, premotor lateral, and anterior cingulate cortex; (2) at rest, in the prefrontal and anterior cingulate cortex and the cerebellum. Internal globus pallidus stimulation led to a reduction of rCBF (1) during motor execution, in the primary motor and prefrontal cortex and the cerebellum; (2) at rest, in the primary motor and anterior cingulate cortex and supplementary motor area. The results are as follows: (1) TD is related to an excess of brain activity notably in the prefrontal and premotor areas; (2) GPi stimulation reduces the activation of motor, premotor, and prefrontal cortex as well as cerebellum.