Saturation of backward stimulated scattering of a laser beam in the kinetic regime

Phys Rev Lett. 2007 Dec 31;99(26):265004. doi: 10.1103/PhysRevLett.99.265004. Epub 2007 Dec 28.

Abstract

Stimulated Raman (SRS) and Brillouin scattering (SBS) are examined in the kinetic regime using particle-in-cell simulations. Wave front bowing of electron-plasma waves (ion-acoustic waves) from trapped particle nonlinear frequency shift is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) is shown to occur in 2D and 3D SRS simulations. The key physics of SRS saturation is identified as a combination of wave front bowing, TPMI, and self-focusing: Bowing marks the beginning of SRS saturation and self-focusing terminates SRS. Ion-acoustic wave bowing also contributes to SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing dissipate wave energy and increase Landau damping, despite trapping that reduces Landau damping initially.