Not only exendin-4 but also exercise has been reported to improve glucose homeostasis by enhancing insulinotropic action, but the nature of its molecular mechanism has not been clarified. We investigated a mechanism to promote insulinotropic action by means of exendin-4 and exercise training in 90% pancreatectomized (Px) rats fed 40% energy fat diets. Px diabetic rats were divided into 4 groups: 1) exendin-4, 2) exendin-4 plus exercise, 3) saline (control), and 4) exercise. During the 8-week experimental period, rats in the exendin-4 groups were subcutaneously administered with 150 pmol/kg exendin-4 twice a day, while those in the exercise groups ran on an uphill treadmill with a 15 degree incline at 20 m/min for 30 min 5 days a week. First phase insulin secretion was elevated by both the administration of exendin-4 and exercise training during hyperglycemic clamp. However, second phase insulin secretion did not differ among the groups. Individual treatment of exendin-4 and exercise expanded beta-cell mass by increasing its proliferation and reducing its apoptosis, but the administration of exendin-4 plus exercise training did not produce any additional, positive effects. Both exendin-4 and exercise enhanced insulin receptor substrate (IRS)-2 expression through the activation of cAMP responding element binding protein in the islets, which potentiated their insulin/insulin like growth factor-1 signaling. The potentiation of the signaling increased the expression of pancreas duodenum homeobox-1, involved in beta-cell proliferation. In conclusion, exendin-4 and exercise equivalently improved glucose homeostasis due to the induction of IRS-2 in the islets of diabetic rats through a cAMP dependent common pathway.