Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection

IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(6):1575-82. doi: 10.1109/58.808883.

Abstract

The transduction mechanisms of a wideband (30 MHz) contact ultrasound sensor based upon the use of a thin polymer film acting as a Fabry-Perot interferometer have been investigated. Polyethylene terepthalate (PET) sensing elements, illuminated by the free-space collimated output of a wavelength-tunable DBR laser diode, have been used to study the sensor transfer function, sensitivity, the effect of water absorption, and frequency response characteristics. Acoustic performance was evaluated by comparing the sensor output with that of a calibrated PVDF membrane hydrophone using laser-generated acoustic transients as a source of broadband ultrasound. An ultrasonic acoustic phase sensitivity of 0.1 rad/MPa, a linear operating range to 5 MPa, and a noise-equivalent-pressure of 20 kPa over a 25 MHz measurement bandwidth were obtained using a water-backed 50 mum PET sensing film. A model of frequency response that incorporates the effect of an adhesive layer between the sensor film and backing material has been developed and validated for different sensing film thicknesses, backing configurations, and adhesive layer thicknesses.