The use of a multigate profiling system with steady laminar flow in plastic tubes revealed spectral artifacts not previously described. In particular, a double or split profile was often observed. In this paper, these artifacts are related to the dual mode ultrasound propagation in the plastic tube. The propagation speeds and, therefore, refraction angles and propagation paths are different for the longitudinal and the shear wave. The power transmission can be extraordinarily sensitive to small variations in the angle of incidence, and this may combine with the existence of a range of angles of incidence within any focused ultrasound beam to produce spectral distortions. The plastic tube is thus shown equivalent to a selective filter, which diminishes some frequency components in the Doppler spectrum relative to others. The spectral artifacts are explained in terms of the relative power transmitted by each mode, and the degree of beam defocusing experienced by each. Spectral distortions persist even when the beam-to-flow orientation is well away from the critical angle. The results of this study show that it is feasible to understand the acoustic transmission behavior of a flow phantom, based on a knowledge of the material properties, and to demonstrate the usefulness of doing so.