A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors

Clin Cancer Res. 2008 Feb 1;14(3):804-10. doi: 10.1158/1078-0432.CCR-07-1786.

Abstract

Purpose: To determine the safety, dose-limiting toxicity, maximum tolerated dose, and pharmacokinetic and pharmacodynamic profiles of the novel hydroxamate histone deacetylase inhibitor belinostat (previously named PXD101) in patients with advanced refractory solid tumors.

Experimental design: Sequential dose-escalating cohorts of three to six patients received belinostat administered as a 30-min i.v. infusion on days 1 to 5 of a 21-day cycle. Pharmacokinetic variables were evaluated at all dose levels. Pharmacodynamic measurements included acetylation of histones extracted from peripheral blood mononuclear cells, caspase-dependent cleavage of cytokeratin-18, and interleukin-6 levels.

Results: Forty-six patients received belinostat at one of six dose levels (150-1,200 mg/m(2)/d). Dose-limiting toxicities were grade 3 fatigue (one patient at 600 mg/m(2); one patient at 1,200 mg/m(2)), grade 3 diarrhea combined with fatigue (one patient at 1,200 mg/m(2)), grade 3 atrial fibrillation (one patient at 1,200 mg/m(2); one patient at 1,000 mg/m(2)), and grade 2 nausea/vomiting leading to inability to complete a full 5-day cycle (two patients at 1,000 mg/m(2)). The maximum tolerated dose was 1,000 mg/m(2)/d. I.v. belinostat displayed linear pharmacokinetics with respect to C(max) and AUC. The intermediate elimination half-life was 0.3 to 1.3 h and was independent of dose. Histone H4 hyperacetylation was observed after each infusion and was sustained for 4 to 24 h in a dose-dependent manner. Increases in interleukin-6 levels were detected following belinostat treatment. Stable disease was observed in a total of 18 (39%) patients, including 15 treated for > or =4 cycles, and this was associated with caspase-dependent cleavage of cytokeratin-18. Of the 24 patients treated at the maximum tolerated dose (1,000 mg/m(2)/d), 50% achieved stable disease.

Conclusions: I.v. belinostat is well tolerated, exhibits dose-dependent pharmacodynamic effects, and has promising antitumor activity.

Publication types

  • Clinical Trial, Phase I
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / toxicity*
  • Drug Administration Schedule
  • Enzyme Inhibitors / administration & dosage
  • Enzyme Inhibitors / pharmacokinetics*
  • Enzyme Inhibitors / toxicity*
  • Female
  • Histone Deacetylase Inhibitors*
  • Histone Deacetylases / pharmacokinetics*
  • Humans
  • Hydroxamic Acids / toxicity*
  • Infusions, Intravenous
  • Life Expectancy
  • Male
  • Middle Aged
  • Neoplasms / drug therapy*
  • Neoplasms / pathology
  • Patient Selection
  • Sulfonamides

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Histone Deacetylase Inhibitors
  • Hydroxamic Acids
  • Sulfonamides
  • Histone Deacetylases
  • belinostat