The auditory cortex of nonhuman primates is comprised of a constellation of at least twelve interconnected areas distributed across three major regions on the superior temporal gyrus: core, belt, and parabelt. Individual areas are distinguished on the basis of unique profiles comprising architectonic features, thalamic and cortical connections, and neuron response properties. Recent demonstrations of convergent auditory-somatosensory interactions in the caudomedial (CM) and caudolateral (CL) belt areas prompted us to pursue anatomical studies to identify the source(s) of somatic input to auditory cortex. Corticocortical and thalamocortical connections were revealed by injecting neuroanatomical tracers into CM, CL, and adjoining fields of marmoset (Callithrix jacchus jacchus) and macaque (Macaca mulatta) monkeys. In addition to auditory cortex, the cortical connections of CM and CL included somatosensory (retroinsular, Ri; granular insula, Ig) and multisensory areas (temporal parietal occipital, temporal parietal temporal). Thalamic inputs included the medial geniculate complex and several multisensory nuclei (suprageniculate, posterior, limitans, medial pulvinar), but not the ventroposterior complex. Injections of the core (A1, R) and rostromedial areas of auditory cortex revealed sparse multisensory connections. The results suggest that areas Ri and Ig are the principle sources of somatosensory input to the caudal belt, while multisensory regions of cortex and thalamus may also contribute. The present data add to growing evidence of multisensory convergence in cortical areas previously considered to be 'unimodal', and also indicate that auditory cortical areas differ in this respect.