Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis

Plant J. 2008 May;54(3):402-14. doi: 10.1111/j.1365-313X.2008.03435.x. Epub 2008 Feb 7.

Abstract

Ultraviolet-B light (UV-B) regulates the expression of genes in a wavelength- and fluence rate-dependent fashion. A signaling pathway consisting of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) and UV RESISTANCE LOCUS 8 (UVR 8) mediates responsiveness to longer wavelength, low intensity UV-B light-activating, for example, HY5 gene expression. By contrast, transcription of another group of genes, including ANAC13, modulated by shorter wavelength, higher intensity UV-B is controlled by a yet unknown and largely COP1-independent signaling cascade. Here we provide evidence by promoter deletion analysis, and characterization of genetic mutants displaying aberrant expression patterns, that two cis-regulatory elements, designated MRE(ANAC13) and UVBox(ANAC13), are required for maximal UV-B induction of the ANAC13 gene in transgenic plants. These elements are located in the proximal 150-bp region of the ANAC13 promoter. They show no significant similarity to each other; the putative MRE(ANAC13) (-AACCTT-) is closely related to MRE(CHS) (-AACCTA-) found in the CHALCONE SYNTHASE (CHS) gene, whereas UVBox(ANAC13) (with core sequence CAAG) represents a novel cis-regulatory element. The novel UVBox(ANAC13) sequence is significantly enriched in the promoter region of a subset of UV-B-induced genes with similar activation properties as ANAC13. In addition, we demonstrate that expression of a chimeric gene containing only the dimerized 12-mer containing UVBox(ANAC13) fused to a minimal CaMV35S promoter/luciferase reporter is (i) efficiently induced by shorter wavelength, higher intensity UV-B, but (ii) does not respond either to longer wavelength UV-B and red light or (iii) to abscisic acid treatment and osmotic, salt, heat and cold stresses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Base Sequence
  • Light
  • Molecular Sequence Data
  • Point Mutation
  • Promoter Regions, Genetic / genetics
  • Regulatory Elements, Transcriptional / genetics*
  • Transcription, Genetic / radiation effects*
  • Ubiquitin-Protein Ligases
  • Ultraviolet Rays*

Substances

  • Arabidopsis Proteins
  • AT2G32950 protein, Arabidopsis
  • Ubiquitin-Protein Ligases