Using the Tph1-invalidated mouse line, in which blood is depleted in serotonin (5-hydroxytryptamine, 5-HT), we have demonstrated previously that maternal 5-HT is required for normal embryonic development. Here, we address the issue of the influence of the maternal 5-HT concentration on the cardiac function of the offspring as adults. We investigated the cardiac phenotype of Tph1-invalidated mice born to Tph1 heterozygous and null mothers. Functionally, all mutants display a significant decrease of cardiac contractility, indicative of impaired left ventricular function. They exhibit progressive dilated cardiomyopathy and are unable to adapt appropriately to a pharmacological stress. Moreover, we show that the cardiopathy is more severe in adult Tph1(-/-) mice born to homozygous mothers than to heterozygous mothers. Importantly, the severity of the cardiac phenotype is inversely correlated with the plasma 5-HT concentration but not the whole-blood 5-HT concentration. Thus, plasma 5-HT concentration may be a useful index of heart failure. These findings show that cardiac function, through the plasma 5-HT concentration, is influenced by the maternal serotonergic status.