Chromatographic separation of enantiomers to assure or enhance chiral purity is of considerable importance and can be achieved by the use of selectors of great structural variety. Cyclodextrins are an important and frequently used class, and they are multimodal selectors since multiple chiral interactions are possible by very different mechanisms. Here, the results of a preliminary examination on the possible value of computational molecular modeling approaches for the predictability of cyclodextrin selector effects for compounds that possess both geometrical and optical isomerism are presented. Interactions between various cyclodextrins and pyrethroic acids are modeled, interpreted, and compared to experimental capillary electrophoresis data.