Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms

J Biol Chem. 2008 May 9;283(19):13001-8. doi: 10.1074/jbc.M704531200. Epub 2008 Feb 14.

Abstract

Heparin-like saccharides play an essential role in binding to both fibroblast growth factors (FGF) and their receptors at the cell surface. In this study we prepared a series of heparin oligosaccharides according to their size and sulfation level. We then investigated their affinity for FGF2 and their ability to support FGF2 mitogenesis of heparan sulfate-deficient cells expressing FGFR1c. Tetra- and hexasaccharides bound FGF2, but failed to dimerize the growth factor. Nevertheless, these saccharides promoted FGF2-mediated cell growth. Furthermore, whereas enzymatic removal of the non-reducing end 2-O-sulfate group had little effect on the 1:1 interaction with FGF2, it eliminated the mitogenic activity of these saccharides. This evidence supports the symmetric two-end model of ternary complex formation. In contrast, even at very low concentrations, octasaccharide and larger heparin fragments conferred a potent mitogenic activity that was independent of terminal 2-O-sulfation. This correlated with the ability to dimerize FGF2 in an apparently cooperative manner. This data suggests that potent mitogenic signaling results from heparin-mediated trans-dimerization of FGF2, consistent with the asymmetric model of ternary complex formation. We propose that, depending on saccharide structure, there are different architectures and modes of ternary complex assembly that differ in stability and/or efficiency of transmembrane signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Chromatography, High Pressure Liquid
  • Fibroblast Growth Factor 2 / metabolism*
  • Heparin / chemistry
  • Heparin / isolation & purification
  • Heparin / pharmacology*
  • Mice
  • Mitosis / drug effects*
  • Receptor, Fibroblast Growth Factor, Type 1 / metabolism
  • Sulfates / chemistry
  • Sulfates / metabolism

Substances

  • Sulfates
  • Fibroblast Growth Factor 2
  • Heparin
  • Receptor, Fibroblast Growth Factor, Type 1