Objective: To obtain insight in the extent to which the human cell lines LiSa-2 and PAZ6 resemble isolated primary human adipocytes.
Design: A combination of cDNA subtraction (representative difference analysis; RDA) and cDNA microarray analysis was used to select adipose specific genes to compare isolated (pre-)adipocytes with (un)differentiated LiSa-2 and PAZ6 cells.
Measurements: RDA was performed on adipose tissue against lung tissue. A total of 1400 isolated genes were sequenced and cDNA microarray technology was used for further adipose related gene selection. 30 genes that were found to be enriched in adipose tissue were used to compare isolated human adipocytes and LiSa-2 and PAZ6 cells in the differentiated and undifferentiated states.
Results: RDA and microarray analysis resulted in the identification of adipose enriched genes, but not in adipose specific genes. Of the 30 most differentially expressed genes, as expected, most were related to lipid metabolism. The second category consisted of methyltransferases, DNMT1, DNMT3a, RNMT and SHMT2, of which the expression was differentiation dependent and higher in differentiated adipocytes. Using the 30 adipose expressed genes, it was found that isolated adipocytes on one hand, and PAZ6 and LiSa-2 adipocytes on the other, differ primarily in lipid metabolism. Furthermore, LiSa-2 cells seem to be more similar to isolated adipocytes than PAZ6 cells.
Conclusion: The LiSa-2 cell line is a good model for differentiated adipocytes, although one should keep in mind that the lipid metabolism in these cells deviates from the in vivo situation Furthermore, our results imply that methylation may have an important function in terminal adipocyte differentiation.