Allelic variants of several genes are increasingly recognized as susceptibility factors in age-related macular degeneration (AMD). Because of its metabolic characteristics the macula is sensitive to oxidative damage, and supplementation with antioxidants has been shown to be effective in slowing the progression of disease in AMD patients. The oxisterol-binding-protein (OSBP2) gene is expressed mainly in the retinal pigmented epithelium underlying the macular region. Its product specifically binds and transports oxisterols, the cytotoxic effects of which may be involved in macular damage. The aim of this study was to search for allelic variants of OSBP2 gene, as well as to evaluate several risk factors in 24 patients with AMD; 17 with nonexudative (NE) and 7 with neovascular (NV) form. Total cholesterol was elevated in 66% of the patients, high-density lipoprotein (HDL) cholesterol was reduced in 12%; vitamin A or vitamin E deficiency was not observed. OSBP2 gene analysis was performed in AMD patients and in 110 control subjects by single-stranded conformational polymorphism (SSCP) analysis followed by direct sequencing. Six allelic variants were detected: 2 nonpolymorphic unique exonic variants in 2 AMD subjects and 4 polymorphic variants (2 exonic and 2 intronic). These data indicate a possible role of OSBP2 gene in the pathogenesis of oxidative damage to the macula induced by oxysterols in AMD patients.