Fast Fourier transform (FFT) correlation methods of protein-protein docking, combined with the clustering of low energy conformations, can find a number of local minima on the energy surface. For most complexes, the locations of the near-native structures can be constrained to the 30 largest clusters, each surrounding a local minimum. However, no reliable further discrimination can be obtained by energy measures because the differences in the energy levels between the minima are comparable with the errors in the energy evaluation. In fact, no current scoring function accounts for the entropic contributions that relate to the width rather than the depth of the minima. Since structures at narrow minima loose more entropy, some of the nonnative states can be detected by determining whether or not a local minimum is surrounded by a broad region of attraction on the energy surface. The analysis is based on starting Monte Carlo Minimization (MCM) runs from random points around each minimum, and observing whether a certain fraction of trajectories converge to a small region within the cluster. The cluster is considered stable if such a strong attractor exists, has at least 10 convergent trajectories, is relatively close to the original cluster center, and contains a low energy structure. We studied the stability of clusters for enzyme-inhibitor and antibody-antigen complexes in the Protein Docking Benchmark. The analysis yields three main results. First, all clusters that are close to the native structure are stable. Second, restricting considerations to stable clusters eliminates around half of the false positives, that is, solutions that are low in energy but far from the native structure of the complex. Third, dividing the conformational space into clusters and determining the stability of each cluster, the combined approach is less dependent on a priori information than exploring the potential conformational space by Monte Carlo minimizations.