Modest spontaneous recovery of ventilation following chronic high cervical hemisection in rats

Exp Neurol. 2008 May;211(1):97-106. doi: 10.1016/j.expneurol.2008.01.013. Epub 2008 Feb 1.

Abstract

Following C2 spinal hemisection (C2HS) in adult rats, ipsilateral phrenic motoneuron (PhMN) recovery occurs through a time-dependent activation of latent, crossed-spinal collaterals (i.e., spontaneous crossed phrenic phenomenon; sCPP) from contralateral bulbospinal axons. Ventilation is maintained during quiet breathing after C2HS, but the ability to increase ventilation during a respiratory stimulation (e.g. hypercapnia) is impaired. We hypothesized that long-term expression of the sCPP would correspond to a progressive normalization in ventilatory patterns during respiratory challenge. Breathing was assessed via plethsymography in unanesthetized animals and phrenic motor output was measured in urethane-anesthetized, paralyzed and vagotomized rats. At 2-week post-C2HS, minute ventilation (VE) was maintained during baseline (room air) conditions as expected but was substantially blunted during hypercapnic challenge (68+/-3% of VE in uninjured, weight-matched rats). However, by 12 weeks the spinal-lesioned rats achieved a hypercapnic VE response that was 85+/-7% of control (p=0.017 vs. 2 wks). These rats also exhibited augmented breaths (AB's) or "sighs" more frequently (p<0.05) than controls; however, total AB volume was significantly less than control at 2- and 12-week post-injury (69+/-4% and 80+/-5%, p<0.05, respectively). We also noted that phrenic neurograms demonstrated a consistent delay in onset of the ipsilateral vs. contralateral inspiratory phrenic burst at 2-12-week post-injury. Finally, the ipsilateral phrenic response to respiratory challenge (hypoxia) was greater, though not normalized, at 4-12- vs. 2-week post-injury. We conclude that recovery of ventilation deficits occurs over 2-12-week post-C2HS; however, intrinsic neuroplasticity remains insufficient to concurrently restore a normal level of ipsilateral phrenic output.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Blood Gas Analysis
  • Cervical Plexus / pathology
  • Disease Models, Animal
  • Functional Laterality
  • Hypercapnia / etiology
  • Hypercapnia / physiopathology
  • Male
  • Motor Neurons / physiology
  • Plethysmography
  • Pulmonary Ventilation*
  • Rats
  • Rats, Sprague-Dawley
  • Recovery of Function / physiology*
  • Spinal Cord Injuries / pathology
  • Spinal Cord Injuries / physiopathology*
  • Time Factors