Little is known about vitamin D metabolism in fishes. Several reports have shown hydroxylase activities in various organs to produce vitamin D metabolites, but the enzymes involved have not been isolated or characterized. We isolated and characterized a renal mitochondrial hydroxylase, CYP27A1, that governs vitamin D metabolism in gilthead sea bream, Sparus auratus. The enzyme is highly expressed in kidney and to a far lesser extent in liver. When treated with 25-hydroxy vitamin D or calcitriol, the kidney responded differentially and time dependently with CYP27A1 mRNA expression levels. This response substantiates a role for CYP27A1 in fish vitamin D metabolism. This notion is strengthened by upregulation of CYP27A1 in sea bream treated with parathyroid hormone-related protein (PTHrP), and suggests an original role for PTHrP in calcitriol-regulated processes n fish similar to the role of PTH in mammalian vitamin D-dependent processes.