Targeted delivery via selective cellular markers can potentially increase the efficacy and reduce the toxicity of therapeutic agents. The folate receptor (FR) has two glycosyl phosphatidylinositol (GPI)-anchored isoforms, alpha and beta. FR-alpha expression is frequently amplified in epithelial cancers, whereas FR-beta expression is found in myeloid leukemia and activated macrophages associated with chronic inflammatory diseases. Conjugates of folic acid and anti-FR antibodies can be taken up by cancer cells via receptor-mediated endocytosis, thus providing a mechanism for targeted delivery to FR+ cells. The aim of this article is to provide a brief overview of applications of FR targeting in drug delivery, with an emphasis on the strategy of using folate as a targeting ligand. In order to do this, recent literature is surveyed on targeted delivery via both FR sub-types, as well as new findings on selective receptor upregulation in the targeted cells. A wide variety of molecules and drug carriers, including imaging agents, chemotherapeutic agents, oligonucleotides, proteins, haptens, liposomes, nanoparticles and gene transfer vectors have been conjugated to folate and evaluated for FR-targeted delivery. Substantial targeting efficacy has been found both in vitro and in vivo. In addition, mechanisms and methods for selective FR upregulation have been uncovered, which might enhance the effectiveness of the FR-targeted delivery strategy. FR-alpha serves as a useful marker for cancer, whereas FR-beta serves as a marker for myeloid leukemia and chronic inflammatory diseases. FR-targeted agents have shown promising efficacy in preclinical models and significant potential for future clinical application in a wide range of diseases.