Femtosecond photolysis of aqueous formamide

J Phys Chem A. 2008 Apr 17;112(15):3339-44. doi: 10.1021/jp7110764. Epub 2008 Mar 6.

Abstract

In this work, we investigate the primary photodynamics of aqueous formamide. The formamide was photolyzed using 200 nm femtosecond pulses, and formation of products and their relaxation was followed with approximately 300 fs time resolution using probe pulses covering the range from 193 to 700 nm. Following excitation, the majority of formamide molecules (approximately 80%) converts the electronic excitation energy to vibrational excitation, which effectively is dissipated to the solvent through vibrational relaxation in just a few picoseconds. The vibrational relaxation is observed as a distinct modulation of the electronic absorption spectrum of formamide. The relaxation process is modeled by a simple one-dimensional wavepacket calculation. A smaller fraction of the excited formamide molecules dissociates to the CHO and NH2 radical pairs, of which 50% escape recombination. In addition to the electronic excitation of formamide, we also observe a small contribution from one-photon ionization of formamide and two-photon ionization and dissociation of the water solvent.