Most antibodies induced by HIV-1 are ineffective at preventing initiation or spread of infection because they are either nonneutralizing or narrowly isolate-specific. Rare, "broadly neutralizing" antibodies have been detected that recognize relatively conserved regions on the envelope glycoprotein. Using stringently characterized, homogeneous preparations of trimeric HIV-1 envelope protein in relevant conformations, we have analyzed the molecular mechanism of neutralization by two of these antibodies, 2F5 and 4E10. We find that their epitopes, in the membrane-proximal segment of the envelope protein ectodomain, are exposed only on a form designed to mimic an intermediate state during viral entry. These results help explain the rarity of 2F5- and 4E10-like antibody responses and suggest a strategy for eliciting them.