A current peak has been observed and measured in ionic electrolytic current of a glutamic acid aqueous solution, placed in a static magnetic field of flux density of 40 microT, with a superimposed low-frequency alternating magnetic field of flux density of 40 nT. The peak occurs at the frequency of the cyclotronic resonance of the molecular mass of a single charged glutamic acid ion, placed in a magnetic flux density equal to that of the static field. The amplitude of the current peak is about 30% of the background electrolytic current. Qualitative considerations and a listing of unsolved problems related to the phenomenology are given. The result is the first contribution to the study we have undertaken on the effects of low-frequency alternating electromagnetic fields on the ionic current of amino acid aqueous solutions which are the basic structural units of the proteins.