Experimental conditions which permit the exchange of smooth muscle 20-kDa light chain into skeletal muscle myosin are described. The hybridization does not result in the regulation of actin-activated ATPase activity of the hybrid myosin by smooth light chain phosphorylation. Further, the KCl dependence of the Mg-ATPase activity of the hybrid was similar to that of skeletal muscle myosin. The dephosphorylation of the smooth light chain in the hybrid did not induce a conformational change in the hybrid from the 6 S to the 10 S state, thereby indicating that the conformational transition is dependent also on the nature of the heavy chain subunit. Exchange of the smooth light chain premodified at its Cys-108 by photolabile 4-(N-maleimido)benzophenone and photolysis resulted in crosslinking to the heavy chain subunit. Immunopeptide mapping using a monoclonal antibody against residues 1-23 at the N-terminus of the skeletal muscle myosin heavy chain identified the location of the photocrosslinking site to be beyond 92 kDa away from the N-terminus.