Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli Isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital

Antimicrob Agents Chemother. 2008 Jun;52(6):2014-8. doi: 10.1128/AAC.01539-07. Epub 2008 Mar 10.

Abstract

Twenty-one Serratia marcescens, ten Klebsiella pneumoniae, and one Escherichia coli isolate with carbapenem resistance or reduced carbapenem susceptibility were recovered from intensive care units (ICUs) in our hospital. Enterobacterial repetitive intergenic consensus-PCR and pulsed-field gel electrophoresis demonstrated that all the S. marcescens isolates belonged to a clonal strain and the 10 K. pneumoniae isolates were indistinguishable or closely related to each other. The MICs of imipenem, meropenem, and ertapenem for all isolates were 2 to 8 microg/ml, except for K. pneumoniae K10 (MICs of 128, 256, and >256 microg/ml). Isoelectric focusing, PCRs, and DNA sequencing indicated that all S. marcescens isolates produced KPC-2 and a beta-lactamase with a pI of 6.5. All K. pneumoniae isolates produced TEM-1, KPC-2, CTX-M-14, and a beta-lactamase with a pI of 7.3. The E. coli E1 isolate produced KPC-2, CTX-M-15, and a beta-lactamase with a pI of 7.3. Conjugation studies with E. coli (EC600) resulted in the transfer of reduced carbapenem susceptibility compared to that of the original isolates, and only the bla(KPC-2) gene was detected in E. coli transconjugants. Plasmid restriction analysis showed identical restriction patterns among all E. coli transconjugants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ompK35/36 gene sequence analysis of outer membrane proteins revealed that K. pneumoniae K10 failed to express OmpK36, because of insertional inactivation by an insertion sequence ISEcp1. All these results indicate that KPC-2-producing S. marcescens, K. pneumoniae, and E. coli isolates emerged in ICUs in our hospital. KPC-2 combined with porin deficiency results in high-level carbapenem resistance in K. pneumoniae. The same bla(KPC-2)-encoding plasmid was spread among the three different genera.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Carbapenems / metabolism*
  • Carbapenems / pharmacology
  • China
  • Conjugation, Genetic
  • Electrophoresis, Gel, Pulsed-Field
  • Escherichia coli / drug effects
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / isolation & purification
  • Hospitals, University
  • Humans
  • Hydrolysis
  • Intensive Care Units
  • Klebsiella pneumoniae / drug effects
  • Klebsiella pneumoniae / enzymology*
  • Klebsiella pneumoniae / genetics
  • Klebsiella pneumoniae / isolation & purification
  • Microbial Sensitivity Tests
  • Plasmids / genetics*
  • Polymerase Chain Reaction / methods
  • Serratia marcescens / drug effects
  • Serratia marcescens / enzymology*
  • Serratia marcescens / genetics
  • Serratia marcescens / isolation & purification
  • beta-Lactam Resistance
  • beta-Lactamases / genetics
  • beta-Lactamases / metabolism*
  • beta-Lactams / pharmacology

Substances

  • Anti-Bacterial Agents
  • Carbapenems
  • beta-Lactams
  • beta-lactamase KPC-2
  • beta-Lactamases