Mouse hearts subjected to repeated transplant surgery and ischemia-reperfusion injury develop substantial interstitial and perivascular fibrosis that was spatially associated with dysfunctional activation of fetal smooth muscle alpha-actin (SM alpha A) gene expression in graft ventricular cardiomyocytes. Compared with cardiac fibroblasts in which nuclear levels of the Sp1 and Smad 2/3 transcriptional-activating proteins increased markedly after transplant injury, the most abundant SM alpha A gene-activating protein in cardiomyocyte nuclei was serum response factor (SRF). Additionally, cardiac intercalated discs in heart grafts contained substantial deposits of Pur alpha, an mRNA-binding protein and known negative modulator of SRF-activated SM alpha A gene transcription. Activation of fetal SM alpha A gene expression in perfusion-isolated adult cardiomyocytes was linked to elevated binding of a novel protein complex consisting of SRF and Pur alpha to a purine-rich DNA element in the SM alpha A promoter called SPUR, previously shown to be required for induction of SM alpha A gene transcription in injury-activated myofibroblasts. Increased SRF binding to SPUR DNA plus one of two nearby CArG box consensus elements was observed in SM alpha A-positive cardiomyocytes in parallel with enhanced Pur alpha:SPUR protein:protein interaction. The data suggest that de novo activation of the normally silent SM alpha A gene in reprogrammed adult cardiomyocytes is linked to elevated interaction of SRF with fetal-specific CArG and injury-activated SPUR elements in the SM alpha A promoter as well as the appearance of novel Pur alpha protein complexes in both the nuclear and cytosolic compartments of these cells.