Elucidation of mechanistic interactions of anthropogenic chemicals is critical to understanding and eventually predicting their behavior in the environment Here, a recently developed technique, saturation transfer double difference (STDD) NMR spectroscopy is employed to determine the interactions of pesticides with humic acid (HA) at the molecular level. The degree of interaction at each NMR observable nucleus in the pesticide can be quantified in the form of an epitope map, which depicts the mechanism of the pesticide-HA interaction. Our results indicate that, at pH 7, halogen atoms (F and Cl) in water-soluble pesticides (diflufenzopyr, acifluorfen, and chlorsulfuron) play a dominant role in influencing binding to HA, whereas carboxyl groups likely play a secondary role when halogen atoms are also present in the molecule, as observed with diflufenzopyr and acifluorfen. However, when present on its own, the carboxyl group dominates in binding affinityto HA (e.g., imazapyr). Electronegativity and electron density appear to play a key role in the mechanism of binding and results suggest that polar bonds are the primary points of HA contact in the water soluble pesticides investigated. Likely interactions may include hydrogen bonding and dipole-dipole interactions.