The hydrodynamic behavior observed for a sphere released under gravity in a Newtonian liquid is not consistent with that predicted by classical continuum theory when the sphere is near a solid wall. An irreversibility arises in the velocity of the sphere as it approaches and recedes from the plane that cannot be accounted for using continuum hydrodynamic equations alone. Earlier experiments on spheres falling from a plane were conducted under conditions such that this irreversibility could be attributed to the surface roughness of the spheres. In this investigation, we extend these studies to situations where the pressure field between the receding sphere and the plane drops to the vapor pressure of the fluid and cavitation occurs. Experimental data supports the theoretical prediction for a sphere's motion based on the irreversible effect of cavitation.