We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of electromagnetically induced transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.