Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation

J Mol Biol. 2008 Apr 18;378(1):227-42. doi: 10.1016/j.jmb.2008.02.029. Epub 2008 Feb 26.

Abstract

The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 A resolution and its C-terminal DNA-binding domain at 1.7 A resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (beta alpha)(4) topology instead of the canonical (beta alpha)(5) fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix alpha 10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix alpha 10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / metabolism*
  • Crystallography, X-Ray
  • Dimerization
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Sequence Homology, Amino Acid

Substances

  • Bacterial Proteins
  • Dev R protein, Mycobacterium tuberculosis

Associated data

  • PDB/3C3W
  • PDB/3C57