Ruminal administration of a triple indigestible marker system comprised of cobalt EDTA (CoEDTA), ytterbium acetate (YbAc), and chromium-mordanted straw (CrS) decreases product:substrate ratios for Delta9-desaturase in bovine milk fat. This experiment was designed to identify the marker(s) responsible and develop an alternative system for simultaneous determination of nutrient flow in the gastro-intestinal tract and milk fatty acid composition. Five lactating dairy cows were used in a 5 x 5 Latin square with 21-d periods to evaluate the effects of YbAc, CoEDTA, and CrS independently or as part of a triple marker system (TMS), and CrEDTA as an alternative to CoEDTA on milk fat composition. Markers were administered in the rumen over a 7-d interval and samples of milk were collected on d -1, 3, 7, and 11. Both TMS and CoEDTA alone reduced the concentrations of milk fatty acids containing a cis-9 double bond, whereas YbAc, CrS, and CrEDTA had no effect. Reductions in product:substrate ratios for Delta9-desaturase were time dependent and evident within 3 d of administration. Ruminal infusion of CoEDTA for 7 d induced mean decreases in milk cis-9 14:1/14:0, cis-9 16:1/16:0, cis-9 18:1/18:0, and cis-9, trans-11 conjugated linoleic acid/trans-11 18:1 concentration ratios of 47.7, 26.7, 40.3, and 42.6%, respectively. In conclusion, ruminal infusion of CoEDTA alters milk fatty acid composition and appears to inhibit Delta9-desaturase activity in the bovine mammary gland. Results indicate that a TMS based on CrEDTA, YbAc, and indigestible neutral detergent fiber can be used for estimating nutrient flow without altering milk fat composition in lactating cows.