Glycerol can be biologically converted to 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate and other polyester fibers. In 1,3-propanediol synthesis pathway, 3-hydroxypropionaldehyde (3-HPA) was an inhibitory intermediary metabolite. The accumulation of 3-HPA in broth would cause an irreversible cessation of the fermentation process. With the object of reducing 3-HPA level in the fermentation broth, dhaT gene which encodes 1,3-propanediol oxidoreductase (PDOR) was cloned and over expressed in 1,3-propanediol producing bacterium Klebsiella pneumoniae TUAC01. dhaT gene was linked downstream of the ptac promoter in an expressing vector pDK6 to form plasmid pDK-dhaT. The newly formed pDK-dhaT was transformed to K. pneumoniae TUAC01. Under the inducement of IPTG, PDOR was over-expressed when the constructed strain was cultured on an LB medium or a fermentation medium. A 5 L scale-up fermentation experiment was done to test the 3-HPA accumulation in broth, with the initial substrate glycerol 30 g/L; the peak levels of 3-HPA in broth were 7.55 and 1.49 mmol/L for control host strain and the constructed strain, respectively. In 50 g/L initial glycerol experiment, the peak level of 3-HPA in broth was 12.57 and 2.02 mmol/l for the control host strain and the constructed strain, respectively. Thus the fermentation cessation caused by the toxicity of 3-HPA was alleviated in the constructed strain.