The lymphatic vasculature is critical for immunity and interstitial fluid homeostasis, playing important roles in diseases such as lymphedema and metastatic cancer. Animal models have been generated to explore the role of lymphatics and lymphangiogenic growth factors in such diseases, and to study lymphatic development. However, analysis of lymphatic vessels has primary been restricted to counting lymphatics in two-dimensional tissue slices, due to a lack of more sophisticated methodologies. In order to accurately examine lymphatic dysfunction in these models, and analyse the effects of lymphangiogenic growth factors on the lymphatic vasculature, it is essential to quantify the morphology and patterning of the distinct lymphatic vessels types in three-dimensional tissues. Here, we describe a method for performing such analyses, integrating user-operated image-analysis software with an approach that considers important morphological, anatomical and patterning features of the distinct lymphatic vessel subtypes. This efficient, reproducible technique is validated by analysing healthy and pathological tissues.