Spirochetes living in an oxygen-rich environment or when challenged by host immune cells are exposed to reactive oxygen species (ROS). These species can harm/destroy cysteinyl residues, iron-sulphur clusters, DNA and polyunsaturated lipids, leading to inhibition of growth or cell death. Because Borrelia burgdorferi contains no intracellular iron, DNA is most likely not a major target for ROS via Fenton reaction. In support of this, growth of B. burgdorferi in the presence of 5 mM H(2)O(2) had no effect on the DNA mutation rate (spontaneous coumermycin A1 resistance), and cells treated with 10 mM t-butyl hydroperoxide or 10 mM H(2)O(2) show no increase in DNA damage. Unlike most bacteria, B. burgdorferi incorporates ROS-susceptible polyunsaturated fatty acids from the environment into their membranes. Analysis of lipoxidase-treated B. burgdorferi cells by Electron Microscopy showed significant irregularities indicative of membrane damage. Fatty acid analysis of cells treated with lipoxidase indicated that host-derived linoleic acid had been dramatically reduced (50-fold) in these cells, with a corresponding increase in the levels of malondialdehyde by-product (fourfold). These data suggest that B. burgdorferi membrane lipids are targets for attack by ROS encountered in the various stages of the infective cycle.