Peroxisome proliferator-activated receptors: "key" regulators of neuroinflammation after traumatic brain injury

PPAR Res. 2008:2008:538141. doi: 10.1155/2008/538141.

Abstract

Traumatic brain injury is characterized by neuroinflammatory pathological sequelae which contribute to brain edema and delayed neuronal cell death. Until present, no specific pharmacological compound has been found, which attenuates these pathophysiological events and improves the outcome after head injury. Recent experimental studies suggest that targeting peroxisome proliferator-activated receptors (PPARs) may represent a new anti-inflammatory therapeutic concept for traumatic brain injury. PPARs are "key" transcription factors which inhibit NFkappaB activity and downstream transcription products, such as proinflammatory and proapoptotic cytokines. The present review outlines our current understanding of PPAR-mediated neuroprotective mechanisms in the injured brain and discusses potential future anti-inflammatory strategies for head-injured patients, with an emphasis on the putative beneficial combination therapy of synthetic cannabinoids (e.g., dexanabinol) with PPARalpha agonists (e.g., fenofibrate).