Verminoside and verbascoside are natural compounds present in plants used in traditional medicine. They exhibit several biological activities including anti-inflammatory, anti-bacterial and anti-tumor properties. The potential applications of these compounds as ingredients in pharmaceutical formulations and cosmetics prompted us to investigate on cytotoxic and genotoxic activity of verminoside and verbascoside on human lymphocytes using genetic toxicity assays recommended in preclinical studies by the US Food and Drug Administration (FDA). We analyzed chromosome aberrations (CAs) and sister chromatid exchanges (SCEs) as well as the mitotic index (MI) and cell viability after the treatments with verminoside and verbascoside. This report is the first to clearly demonstrate a significant increase of structural CAs and SCEs on normal human lymphocytes associated with a reduction of the MI in both verminoside- and verbascoside-treated cells. Moreover, we observed enhanced protein expression levels of PARP-1 and p53 that are key regulatory proteins involved in cell proliferation and DNA repair. Interestingly, mass spectrometric analysis of the compounds in the culture supernatants also showed that verminoside remained unchanged during the culture period while verbascoside was hydrolyzed to its derivative, caffeic acid and the last one seems to be responsible for the observed biological activity.