Abdominal obesity is a principal risk factor in the development of metabolic syndrome. Previously, we showed that a palatinose-based liquid formula, Inslow/MHN-01, suppressed postprandial plasma glucose level and reduced visceral fat accumulation better than the standard formula (SF). To elucidate the mechanism of Inslow-mediated anti-obesity effect, expression levels of genes involved in the glucose and lipid metabolism were compared in Inslow- and SF-fed rats. Both fasting plasma insulin level and average islet sizes were reduced in the Inslow group. We also found less abdominal fat accumulation and reduced hepatic triacylglycerol content in the Inslow group. Expression of the beta-oxidation enzymes and uncoupling potein-2 (UCP-2) mRNAs in the liver of the Inslow group were higher than the SF group, which was due to a concomitant higher expression of the peroxisome proliferator-activated receptor (PPAR)-alpha mRNA in the former. Furthermore, expression of the UCP-2 and adiponectin mRNAs in the epididymal fat were higher in the Inslow group than the SF group, and were stimulated by a concomitant increase of the PPAR-gamma gene expression in the former. These results strongly suggested that the anti-obesity effect of Inslow was due to an increase in the hepatic PPAR-alpha and adipocyte PPAR-gamma gene expressions.
Keywords: PPAR-α; PPAR-γ; fat oxidation; insulin-sparing effect; palatinose.