In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus

J Antimicrob Chemother. 2008 Jul;62(1):156-60. doi: 10.1093/jac/dkn133. Epub 2008 Apr 9.

Abstract

Objectives: ABI-0043 is a novel benzoxazinorifamycin derivative, which derives its potent bactericidal activity by the specific inhibition of bacterial RNA polymerase. We evaluated the in vitro pharmacodynamics and bactericidal activity of ABI-0043 against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA).

Methods: Using time-kill studies at a wide range of concentrations of ABI-0043, we evaluated the killing activity against four clinical isolates of S. aureus over 24 h. An integrated pharmacokinetic/pharmacodynamic area measure was applied to all cfu data and was fitted to a Hill-type mathematical model to evaluate pharmacodynamics.

Results: Bacterial killing for ABI-0043 occurred rapidly and in a concentration-dependent manner. Bactericidal activity was achieved within 4 h at > or =16 x MIC against all isolates. Bacterial reductions were greatest at > or =64 x MIC against MRSA and MSSA isolates, as a >4 log(10) cfu/mL reduction was observed as early as 2 h, and sustained throughout 24 h. The pharmacodynamics of ABI-0043 was well described by a Hill-type model, with a steep sigmoidicity constant and a low EC(50) against all isolates.

Conclusions: ABI-0043 displayed rapid and sustained bactericidal activity against S. aureus clinical isolates. ABI-0043 represents a promising antistaphylococcal agent to combat serious S. aureus infections. Further, pharmacokinetic, pharmacodynamic and in vivo studies are warranted to determine its ultimate place in antibacterial therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacokinetics*
  • Anti-Bacterial Agents / pharmacology*
  • Colony Count, Microbial
  • Dose-Response Relationship, Drug
  • Humans
  • Methicillin Resistance
  • Microbial Viability
  • Rifamycins / pharmacokinetics*
  • Rifamycins / pharmacology*
  • Staphylococcal Infections / microbiology
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / isolation & purification
  • Time Factors

Substances

  • ABI 0043
  • Anti-Bacterial Agents
  • Rifamycins